
Tracking ASL Gestures Using Autoencoders
Katyani Mehra (km7872@rit.edu) | Advisor: Richard Lange

Introduction Approach

Results
The mutual information score is 1.03, indicating a strong but not 
perfect dependency between the ASL gestures and the tokens 
produced. With further training, we expect to improve this score 
and generate more tokens.
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Motivation
Current ASL translation systems often treat phrases as English 
to Sign mappings, instead of True ASL. 

Current systems fail to capture ASL grammar
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Sign languages use visual elements like handshape, location, 
and movement instead of spoken words. These elements, or 
tokens, are essential for recognition, translation, and generation 
using machine learning.

Why VQ-VAE?
VQ-VAE’s excel at working with discrete data, making them 
well-suited for sign language, where tokens don't map directly to 
individual frames or body parts:
● 1 token ≠ 1 frame
● 1 gesture ≠ 1 body part

MS-ASL Dataset
● Continuous ASL phrases.
● 456 videos = ~ 1900 samples = ~ 900000 frames

Mediapipe Holistic Pose Estimation Model
● Real-time human pose detection model.
● Tracks: Body, right hand, left hand, face landmarks 
● Each frame has 543 Keypoints (3D).
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A major reason for this difference is the lack of effective 
tokenization. Manual tokenization for ASL videos is 
time-consuming and costly. To address this, we propose using 
Vector Quantised - Variational AutoEncoder (VQ-VAE), an 
unsupervised model that compresses ASL videos into 
discrete tokens.
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Normalization
To account for variations in size and position due to camera 
distance and frame placement, we normalize landmarks to a new 
coordinate system. In this system, the left shoulder is mapped 
to 1, the right shoulder to -1, and the center of the shoulders is 
set to 0. The body is then scaled to a consistent size by 
calculating the distance between the left and right shoulders and 
adjusting the scale accordingly.
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